Apoptosis in cerebellar granule cells is blocked by high KCl, forskolin, and IGF-1 through distinct mechanisms of action: the involvement of intracellular calcium and RNA synthesis.
نویسندگان
چکیده
Cerebellar granule cells deprived of depolarizing concentration of extracellular potassium, [K+]o, undergo apoptosis. We here report that this apoptotic process is associated with an immediate and permanent decrease in the levels of free intracellular calcium, [Ca2+]i. Although forskolin and IGF-1 are both able to prevent apoptosis, only forskolin is able to counteract the instantaneous decrease of [Ca2+]i. However, the early effect of forskolin on [Ca2+]i is lost after longer incubation in low [K+]o. The calcium antagonist nifedipine is able to inhibit the survival effect of high [K+]o, while not affecting forskolin and IGF-1 promoted survival, as assessed by viability and genomic DNA analysis. Accordingly, the L-type calcium channels agonist Bay K8644 significantly enhanced the survival of low KCl treated neurons. To temporally characterize the signal transduction events and the essential transcriptional step in cerebellar granule cells apoptosis, we determined the time course of the rescue capacity of high [K+]o, forskolin, IGF-1, and actinomycin D. Addition of high KCl, forskolin, or IGF-1 6 hr after the initial KCl deprivation saves 50% of cells. Remarkably, 50% of neurons loss the potential to be rescued by actinomycin D after only 1 hr in low [K+]o. Finally, we show that the survival promoting activities of high [K+]o, forskolin, and IGF-1 do not require RNA synthesis. We conclude that [Ca2+]i is involved in the survival promoting activity exerted by high [K+]o but not in those of forskolin and IGF-1, and that all three agents, although rescuing neurons from apoptosis through distinct mechanisms of action, do not necessitate RNA transcription.
منابع مشابه
The Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملActions and release characteristics of secretin in the rat cerebellum
Secretin, a peptide hormone of the gastrointestinal system, has been implicated in the etiology of autism. Our laboratory previously demonstrated the expression of secretin and its receptors in specific central neurons, and found for the first time that secretin is neuroactive in the cerebellum. We showed that bath application of secretin facilitated the release of GABA from terminals of basket...
متن کاملC-terminal fragments of APP: Its neurotoxic mechanisms and involvement in gene transcription
Several lines of evidence suggest that some neurotoxicity in AD is due to proteolytic fragments of APP. In this study, we compared the potency of neurotoxicity induced by CT with that of A-beta neurotoxicity and our results showed that various CT peptide fragments (CTFs; CTF99, AICD, CTF31) caused neurotoxicity in cultured cells and primary cortical neurons, induced strong non-selective inward ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 2 شماره
صفحات -
تاریخ انتشار 1995